111 research outputs found

    Automatic computation of quantum-mechanical bound states and wavefunctions

    Get PDF
    We discuss the automatic solution of the multichannel Schr\"odinger equation. The proposed approach is based on the use of a CP method for which the step size is not restricted by the oscillations in the solution. Moreover, this CP method turns out to form a natural scheme for the integration of the Riccati differential equation which arises when introducing the (inverse) logarithmic derivative. A new Pr\"ufer type mechanism which derives all the required information from the propagation of the inverse of the log-derivative, is introduced. It improves and refines the eigenvalue shooting process and implies that the user may specify the required eigenvalue by its index

    High-order convergent deferred correction schemes based on parameterized Runge-Kutta-Nyström methods for second-order boundary value problems

    Get PDF
    AbstractIterated deferred correction is a widely used approach to the numerical solution of first-order systems of nonlinear two-point boundary value problems. Normally, the orders of accuracy of the various methods used in a deferred correction scheme differ by 2 and, as a direct result, each time deferred correction is used the order of the overall scheme is increased by a maximum of 2. In [16], however, it has been shown that there exist schemes based on parameterized Runge–Kutta methods, which allow a higher increase of the overall order. A first example of such a high-order convergent scheme which allows an increase of 4 orders per deferred correction was based on two mono-implicit Runge–Kutta methods. In the present paper, we will investigate the possibility for high-order convergence of schemes for the numerical solution of second-order nonlinear two-point boundary value problems not containing the first derivative. Two examples of such high-order convergent schemes, based on parameterized Runge–Kutta-Nyström methods of orders 4 and 8, are analysed and discussed

    Exponentially-fitted methods and their stability functions

    Get PDF
    Is it possible to determine the stability function of an exponentially-fitted Runge-Kutta method, without actually constructing the method itself? This question was answered in a recent paper and examples were given for one-stage methods. In this paper we summarize the results and we focus on two-stage methods

    On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation

    Get PDF
    The piecewise perturbation methods (PPM) have proven to be very efficient for the numerical solution of the linear time-independent Schrödinger equation. The underlying idea is to replace the potential function piecewisely by simpler approximations and then to solve the approximating problem. The accuracy is improved by adding some perturbation corrections. Two types of approximating potentials were considered in the literature, that is piecewise constant and piecewise linear functions, giving rise to the so-called CP methods (CPM) and LP methods (LPM). Piecewise polynomials of higher degree have not been used since the approximating problem is not easy to integrate analytically. As suggested by Ixaru (Comput Phys Commun 177:897–907, 2007), this problem can be circumvented using another perturbative approach to construct an expression for the solution of the approximating problem. In this paper, we show that there is, however, no need to consider PPM based on higher-order polynomials, since these methods are equivalent to the CPM. Also, LPM is equivalent to CPM, although it was sometimes suggested in the literature that an LP method is more suited for problems with strongly varying potentials. We advocate that CP schemes can (and should) be used in all cases, since it forms the most straightforward way of devising PPM and there is no advantage in considering other piecewise polynomial perturbation methods

    Three-stage two-parameter symplectic, symmetric exponentially-fitted Runge-Kutta methods of Gauss type

    Get PDF
    We construct an exponentially-fitted variant of the well-known three stage Runge-Kutta method of Gauss-type. The new method is symmetric and symplectic by construction and it contains two parameters, which can be tuned to the problem at hand. Some numerical experiments are given

    Multiparameter exponentially-fitted methods applied to second-order boundary value problems

    Get PDF
    Second-order boundary value problems are solved by means of a new type of exponentially-fitted methods that are modifications of the Numerov method. These methods depend upon a set of parameters which can be tuned to solve the problem at hand more accurately. Their values can be fixed over the entire integration interval, but they can also be determined locally from the local truncation error. A numerical example is given to illustrate the ideas

    Solution of Sturm-Liouville problems using modified Neumann schemes

    Get PDF
    The main purpose of this paper is to describe the extension of the successful modified integral series methods for Schrodinger problems to more general Sturm-Liouville eigenvalue problems. We present a robust and reliable modified Neumann method which can handle a wide variety of problems. This modified Neumann method is closely related to the second-order Pruess method but provides for higher-order approximations. We show that the method can be successfully implemented in a competitive automatic general-purpose software package

    Exponentially fitted fifth-order two-step peer explicit methods

    Get PDF
    The so called peer methods for the numerical solution of Initial Value Problems (IVP) in ordinary differential systems were introduced by R. Weiner et al [6, 7, 11, 12, 13] for solving different types of problems either in sequential or parallel computers. In this work, we study exponentially fitted three-stage peer schemes that are able to fit functional spaces with dimension six. Finally, some numerical experiments are presented to show the behaviour of the new peer schemes for some periodic problems
    • …
    corecore